
PAK in Alzheimer disease, Huntington disease
and X-linked mental retardation

Qiu-Lan Ma,1,2 Fusheng Yang,1,2 Sally A. Frautschy1,2 and Greg M. Cole1,2,*

1Department of Neurology; University of California Los Angeles; Los Angeles, CA USA; 2Geriatric Research and Clinical Center; Greater Los Angeles Veterans Affairs Healthcare

System; West Los Angeles Medical Center; Los Angeles, CA USA

Keywords: Alzheimer disease, curcumin, PAK, ROCK, signaling pathways, synapses

Abbreviations: AD, Alzheimer disease; Aβ, amyloid-β; NFT, neurofibrillary tangles; PAK, p21-activated kinase; APP,
amyloid precursor protein; ADDLs, β-amyloid-derived oligomers; MR, mental retardation; CRMP-2, collapsin response mediator

protein-2; LTP, long term potentiation; LIMK, LIM-Kinase; NMDARs, N-methyl-D-aspartate receptors; BBB, blood brain barrier;
CA1, Cornu Ammonis 1; DHA, docosahexaenoic acid; CTCL, cutaneous T-cell lymphoma; HDAC, histone deacetylase;

HD, Huntington disease; XLMR, X-linked mental retardation; MRX, nonsyndromic mental retardation; FXS, fragile X syndrome;
FMR1, the fragile X mental retardation 1

Developmental cognitive deficits including X-linked mental
retardation (XLMR) can be caused by mutations in P21-
activated kinase 3 (PAK3) that disrupt actin dynamics in
dendritic spines. Neurodegenerative diseases such as
Alzheimer disease (AD), where both PAK1 and PAK3 are
dysregulated, may share final common pathways with XLMR.
Independent of familial mutation, cognitive deficits emerging
with aging, notably AD, begin after decades of normal
function. This prolonged prodromal period involves the
buildup of amyloid-b (Ab) extracellular plaques and intraneur-
onal neurofibrillary tangles (NFT). Subsequently region
dependent deficits in synapses, dendritic spines and cognition
coincide with dysregulation in PAK1 and PAK. Specifically
proximal to decline, cytoplasmic levels of actin-regulating Rho
GTPase and PAK1 kinase are decreased in moderate to severe
AD, while aberrant activation and translocation of PAK1
appears around the onset of cognitive deficits. Downstream
to PAK1, LIM kinase inactivates cofilin, contributing to cofilin
pathology, while the activation of Rho-dependent kinase ROCK
increases Ab production. Ab activation of fyn disrupts neuronal
PAK1 and ROCK-mediated signaling, resulting in synaptic
deficits. Reductions in PAK1 by the anti-amyloid compound
curcumin suppress synaptotoxicity. Similarly other neuro-
logical disorders, including Huntington disease (HD) show
dysregulation of PAKs. PAK1 modulates mutant huntingtin
toxicity by enhancing huntingtin aggregation, and inhibition
of PAK activity protects HD as well as fragile X syndrome (FXS)
symptoms. Since PAK plays critical roles in learning and
memory and is disrupted in many cognitive disorders,
targeting PAK signaling in AD, HD and XLMR may be a novel
common therapeutic target for AD, HD and XLMR.

Alzheimer Disease

Alzheimer disease (AD) is the most prevalent neurodegenerative
disease of aging but has many common mechanisms with other
neurodegenerative diseases. AD is characterized clinically by
progressive cognitive decline and pathologically by prodromal
accumulation of neuritic plaques containing amyloid-β (Aβ)
protein and neurofibrillary tangles containing tau protein
aggregates comprising paired helical filaments. Proximal to
cognitive decline, there is a selective loss of synapses, especially
excitatory synapses and vulnerable neurons in networks required
for learning and memory. Synaptic loss is accelerated at early
stages of AD clinical symptoms and is more closely related to
cognitive deficits than neuronal loss or amyloid buildup.1,2

Although soluble aggregated Aβ forms called β-amyloid-derived
oligomers (ADDLs) or Aβ oligomers, including dimers, trimers
and dodecamers (12-mer or Aβ *56) are implicated in synaptic
dysfunction and loss in AD patients and AD animal models3-6 and
Aβ immunoneutralization rescues synaptic defects in AD animal
models,7,8 there are major gaps in our understanding the
mechanisms controlling synaptic loss in AD and other neurode-
generative diseases, which remain under active investigation. Here
we explore the potential overlap of dysregulation in PAK kinases
that cause mental retardation, with synaptic deficits in other
neurodegenerative diseases, which link GTPases to cytoskeletal
reorganization and to nuclear signaling.

The RAC/CDC42-activated kinase PAK1 is a key regulator for
actin cytoskeleton and dendritic spine morphogenesis. We first
reported a loss of PAK1 and PAK3 in cytoplasm of AD brain
specimens, as well as in AD animal and cellular models, suggesting
PAKs might play crucial roles in dendritic spine/synapses loss and
cognitive defects in AD.9 Synaptic plasticity is dependent on the
regulation of the actin cytoskeleton in dendritic spines.10-12 The
regulation of F-actin cytoskeleton involves various actin-binding
proteins and the molecular regulators of actin dynamics by
membrane receptors and their downstream signaling cascades. In
particular, Rho family GTPases, Rho, RAC and CDC42, play a
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central role in regulating actin reorganization.13,14 The balance
between RhoA and RAC/CDC42’s reciprocal effects are linked to
distinct upstream and downstream regulators to regulate
morphogenesis of dendritic spines and synaptic plasticity. RhoA
activates the kinase ROCK which also promotes processing of
amyloid precursor protein (APP) to its derivative toxic species,
Aβ42.15 Normally, both PAK1 and PAK 3 show diffuse
distribution in cell bodies and dendrites and they are activated
by upstream RAC and CDC42, but reduced in the cytoplasm of
AD brain specimens and in AD animal and cellular models. This
suggests that disruption in the signaling of both PAKs might play
crucial roles in deficits of dendritic spines, synapses and cognition
in AD.9 While PAK1 regulates actin cytoskeleton through LIMK1
control of cofilin, notably in dendritic spines, PAK3 shows
activity-dependent recruitment into dendritic spines where it
regulates dynamics16 but also uses the adaptor protein NCK2/
Grb4 downstream from Ephrin B to regulate synaptic transmis-
sion.17 Most significantly, both have redundant and overlapping
functions so that knockout of either PAK1 or PAK3 alone does
not cause a robust morphological phenotype in mice or loss of p-
cofilin and F-actin, while, in contrast, dual PAK1 and 3 knockout
causes a dramatic marked loss of dendritic and neuronal arbor, p-
coflin and F-actin, brain shrinkage and defects in dendritic spines,
LTD, LTP and cognition but without global neuron loss.18 Thus,
both PAK1 and PAK3 deficits in AD are relevant to synaptic and
cognitive deficit. However, we also found that PAK1 showed
aberrant activation in AD, and this activated PAK1 was
translocated from cytoplasm to membrane, probably to granular
structures in a complex with its activators, GTPases RAC/
CDC42.8 Therefore, while here we mainly review the pathologic
activation of PAK1 and its downstream LIM kinase signaling
pathways and potential therapeutic interventions for targeting
these PAK1-LIM kinase pathway defects in AD, we acknowledge
the significant role of PAK3.

Alteration of PAKs in AD

Cognitive decline has been directly linked to the synaptic
dysfunction, especially to synapses, postsynaptic and dendritic
spine loss in AD and mental retardation (MR) syndromes.1,19 A
primary role of dendritic spine defects in MR has been
demonstrated by the discovery of multiple mutant X-linked MR
genes.19 These MR genes reveal a clustering of proteins in the
postsynaptic pathways regulating spine actin assembly and
disassembly and spine morphogenesis. PAK3 is one of these
MR genes and missense mutation in PAK3 causes severe X-linked
nonspecific MR.20,21 Animal models of MR syndromes created
using the AID (auto-inhibitory domain) of PAK1, which blocks
PAK1–3,22 or knockout of its downstream LIM-kinase both show
defects in dendritic spines and cognition.23 These observations
suggest the essential role of the PAK1–3/LIM-kinase pathway in
regulating synaptic plasticity.

Similar to MR, in AD, postsynaptic and dendritic spine defects
are an early event in memory circuits and therefore spatiotempo-
rally situated to play a critical role in cognitive deficits. For
example, although the overall estimate of neuronal loss in AD

hippocampus ranges from 5–40%, albeit with higher losses in CA1,
overall loss of postsynaptic proteins on Westerns from whole
hippocampus, such as the actin-regulating developmentally-
regulated brain protein (drebrin), have been found to reach 70–
95%.24-26 Selective drebrin loss results from an attack on excitatory
synapses since drebrin regulates actin assembly and drebrin-
dependent actin filaments in dendritic filopodia govern synaptic
targeting of PSD-95 and dendritic spine morphogenesis.27 Two
major neuronal isoforms of PAK exist in the brain, PAK1 and
PAK3. Normally, both show diffuse distribution in cell bodies and
dendrites. However, in AD brain, significant losses of PAK1 (35%
± 6) and PAK3 (55–69%) were observed in hippocampus, while
PAK3 was also significantly decreased in AD temporal cortex (63–
77%). However, the loss of PAK1’s kinase activity clearly exceeds
that of its protein level. The auto-phosphorylated PAK1 at Ser 141,
an index of activity, was reduced by 73% in AD temporal cortex.9

In addition, PAK1 also showed aberrant activation in AD, and this
activated PAK1 was translocated from cytoplasm to membrane,
probably to granular structures in a complex with its activators,
GTPases RAC/CDC42.8 An increase in the total protein level of
PAK1–3 at early stages of AD but a reduction of both total and
cytoplasmic phospho-PAK1 in late-stage severe AD was observed
by Nguyen and collaborators.28 Moreover, a similar reduction and
sub-cellular translocation of PAK1 was observed in a transgenic AD
mouse model.8 Similarly, cytoplasmic phosphoPAK1 (pPAK) was
significantly reduced in a triple transgenic mouse model of AD that
develops both plaque and tangle pathology and this loss of pPAK,
and cognitive deficits were improved by dietary docosahexaenoic
acid (DHA).29 Since PAK1–3 defects are sufficient to cause
cognitive deficits, these data suggest that dys-regulation (hyper-
activation) of PAK1 followed by a loss of soluble pPAK may also
play an important role in dendritic spine/synapse loss and cognitive
defects in AD.

To characterize the likely mechanism behind the cytoplasmic
PAK deficits in AD, cultured hippocampal neurons were treated
with β-amyloid (Aβ) oligomers, where we then observed a rapid
abnormal PAK activation/ translocation followed by subsequent
loss of cytoplasmic pPAK. This aberrant activation was
accompanied by a rapid loss of F-actin and dendritic spines
unlike the response to normal activation of PAK1 by RAC/
CDC42. The wild-type PAK1, but not its kinase–dead mutant
(K299A), prevented the pathological changes in spines, providing
evidence that functional PAK1 recruitment and signaling is
blocked by Aβ exposure.8 In addition, it has been observed that
fibrillar Aβ42 treatment of hippocampal neurons can also activate
PAK1.30 These results suggest that β-amyloid species could be the
primary elements responsible for PAK dysfunction in AD. These
results also indicated that PAK1 has a significant functional role in
neuronal plasticity, many important functions can be compen-
sated by PAK3 and aberrant and chronic PAK1 activation should
be considered “bad” in AD and Huntington disease (HD) that
will be discussed later.

Since PAK1 aberrant activated at early stages of AD, inhibition
of PAK1 could reverse, partially reverse or delay clinical signs in
AD. However, since PAK1 and PAK3 were eventually lost at late-
stage severe AD, this dynamic alteration of PAK at different AD
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stages may also limit PAK inhibitors as a consistent drug for AD
therapy.

RAC/PAK1/LIMK/cofilin signaling pathway in AD. The
regulation of actin cytoskeletal dynamics is through the
phosphorylation of cofilin at Ser 3 by LIM-Kinase (LIMK), in a
pathway where PAK1 activates LIMK.31 PAK/LIMK signaling
inactivates cofilin, which depolymerizes actin filament (F-actin).
Our data suggest this may enable other proteins, for example,
drebrin, to bind and regulate actin in postsynaptic spines.
Pathologic intracellular inclusion bodies (Hirano bodies) contain-
ing cofilin and smaller actin rods decorated by other actin-binding
proteins are prominent features in the hippocampus and cortex of
AD brains.32,33 We have observed that confocal co-labeling of
pPAK and cofilin in AD hippocampus show cells with different
stages of pPAK and cofilin pathologies; for instance, some cells
exhibit increasingly intense cofilin labeling associated with
progressively decreased diffuse pPAK accompanied by granular
structure staining (Fig. 1A). The severe pPAK and cofilin
pathologies in AD are associated with the reduction in the
dendritic spine actin-regulating protein drebrin (70–95%).25-27

This is consistent with the hypothesis that translocation and loss
of the cytosolic pPAK can lead to local pathology related to cofilin
aggregation, drebrin loss and synaptic defects observed in AD
brain.9

Cofilin labeling in and around Aβ plaques is also observed in
AD model APPswe transgenic mouse hippocampus. Triple
labeling of pPAK (green), cofilin (red) and Aβ plaques (blue with
10G4 antibody) in Tg+ mouse hippocampus indicated intense
central-plaque pPAK staining sometimes associated with local
cofilin puncta (Fig. 1B), similar to that observed in AD
hippocampus. In addition, a large 62% loss in drebrin was also
observed in these mice.9 Therefore, pPAK and cofilin pathology
and severe drebrin loss are found in both AD and aged AD

APPswe mice, suggesting that the dysregulation of PAK/LIMK/
cofilin signaling pathway might play a significant role in the
regulation of synaptic defects and memory deficits in AD. Both
Aβ oligomers and fibrillar Aβ42 treatment of hippocampal
neurons can activate PAK1, which in turn activates LIMK1 in
vitro.9,30 In addition, Heredia et al. (2006) observed that fibrillar
Aβ could activate LIMK1 and induce ADF/cofilin phosphoryla-
tion in cultured neurons, suggesting LIM kinase is required for
the neurotoxicity of Aβ.34 They also demonstrated that in AD
brain, the number of pLIMK-positive neurons was significantly
increased in those regions affected with AD pathology.34

Collectively, these data suggest that dysregulation of the RAC/
PAK/LIMK/cofilin signaling pathway occurs in AD brain.

Rho/ROCK/LIMK/cofilin signaling pathway in AD. ROCKs,
Rho-activated Ser/Thr kinases, are implicated in Rho-mediated
actin reorganization. For the maintenance of synaptic balance,
ROCK mediates signals to retract the growth cones and dendritic
spines via its downstream target LIMK. Recent studies have found
that ROCKs can induce the processing of APP to the toxic Aβ42
species and inhibitors of ROCKs, such as statins and certain
NSAIDs, can significantly suppress this amyloidogenic APP
processing.15,32,35 Our earlier study also found that chronic orally
administered ibuprofen, the most commonly used non-aspirin
NSAID, fed to a mutant APPswe transgenic AD mouse model
resulted in significant reductions of Aβ deposits,36,37 This might
also relate to ROCK signaling although the doses required for
ROCK inhibition in vitro are higher than the low micromolar
levels we have measured in brain. One of the ROCK effectors,
CRMP-2 (collapsin response mediator protein-2) displays a
prominent hyperphosphorylation in AD, but CRMP-2 can also
be phosphorylated by known tau kinases, GSK3β and Cdk538

(Fig. 2). These observations suggest aberrant ROCK and
downstream CRMP2 signaling could also play a role in AD
pathogenesis.

Petratos et al. (2008) observed that Aβ increases while a ROCK
inhibitor prevents the RhoA-GTP response and CRMP-2
phosphorylation observed in cultured neuroblastoma cells.
RhoA and phospho-CRMP-2 levels are increased in neurons
surrounding amyloid plaques in the cerebral cortex of the APPswe
mice.32,39 These observations support the hypothesis that Aβ
increases the Rho GTPase activity via ROCK2 activation that
enhances CRMP-2 phosphorylation to inhibit neurite outgrowth
and synapse formation. Since the RhoA/ROCK pathway also
activates ADF/cofilin-mediated actin depolymerization via LIMK,
dysregulation of the Rho-ROCK/LIMK/cofilin signaling pathway
may also play a role in the pathogenesis of synaptic defects in AD.

In addition, although conventionally angiotensin receptors
serve to regulate vasodilation and blood pressure, AT2 receptors
linked to RhoA inhibition are found on neurons and have been
implicated in X-linked mental retardation and the regulation of
actin dynamics in dendritic spines.40 The possibility of using
selective AT2 receptor agonists to modulate synaptic plasticity and
potentially treat AD has been recently reviewed.41

Connecting NMDA receptors, FYN and PAK signaling in
AD. The Rho family interacts with N-methyl-D-aspartate
receptors (NMDARs). NMDARs are a subtype of ionotropic

Figure 1. Confocal co-labeling of pPAK and cofilin in AD hippocampus
and in amyloid plaques from AD APPswe transgenic mice hippocampus.
(A) Confocal co-labeling of pPAK and cofilin in AD hippocampus. Some
neurons exhibit intense cofilin labeling (red) and granular pPAK staining
(green). Blue represents DAPI. (B) Confocal co-labeling of pPAK and
cofilin in amyloid plaques in AD APPswe transgenic mice hippocampus.
Triple labeling of pPAK (green), cofilin (red) and amyloid plaques (blue
with 10G4 antibody) showed that both pPAK and coffilin were present in
amyloid plaques. Magnification: 100X.
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glutamate receptor that play a critical role in synaptic mechanisms
of learning and memory.42 NMDARs are directly anchored to the
PSD and thus to the actin cytoskeleton. They flux Ca2+ and are
central to dendrite spine formation induced by neuronal activity.
Recent studies have shown that Ca2+ influx can stimulate the
CaMKK/CaMKI cascade, which activates GIT1 and a RAC GEF,
and subsequently downstream PAK activation involved in the
induction of synaptogenesis.43 Thus cross-talk between NMDARs
and the Rho family via calcium signaling to activate RAC/PAK
occurs during synaptic plasticity underlying new synapse
formation.

NMDARs subunit NR2A and NR2B mRNA levels are
decreased in hippocampus and entorhinal cortex from AD
brains.44 It was also found that decreased protein subunits of
NMDARs, for example NR2B as well as the scaffold PSD-95 and
activated a-CaMKII occur in postsynaptic density preparations of
APP[V717I] AD transgenic mice. This was associated with

impaired NMDA-dependent long-term potentiation (LTP), a
major cellular mechanism required for learning and memory and
with decreased NMDA- and AMPA-receptor currents in
hippocampal CA1 region.45 These observations on the NMDA
receptor link to RAC/PAK appear directly relevant to in vitro
studies that show NMDA receptors mediate Aβ oligomer-induced
effects on dendritic spine and synaptic marker loss in cultured
neurons.46,47

The SRC family Tyr-kinase FYN phosphorylates NMDA
receptor subunits NR2A and NR2B. Robust phosphorylation of
NR2B at Tyr1472 by FYN has been implicated in the long-term
potentiation (LTP).48 We found that after 5 h Aβ oligomers
decreased pNR2B Tyr1472 levels in both membrane and cytosol
fractions without altering the membrane/cytosol ratio. SRC family
Tyr-kinase inhibitor PP2 didn’t block these oligomer effects, but
significantly blocked both RAC and pPAK translocation in Aβ
oligomer-treated primary neurons. Thus, Aβ oligomer-induced
RAC/PAK changes appear downstream from SRC/FYN.8 In fact,
PP1, a PP2 derivative, blocks both RAS-induced PAK1 activation
and growth of RAS-induced transformants (cancers) in vivo
without any adverse effect.49 Although the responsible direct
target of PP1 among SRC family kinases needs to be clarified,
FYN appears to be among its likely targets, because the IC 50 of
PP1 for blocking PAK1 is around 10 nM, which is very close to
the IC50 for FYN.50 Oncogenic RAS expression was found to
upregulate FYN mRNA dramatically (. 100-fold) and its kinase
activity through AKT while either siRNA for FYN or the SRC/
FYN inhibitor PP2 strongly inhibits the PAK1-dependent
metastasis/invasion of human breast cancers.51

FYN activation has been implicated in soluble oligomer
(ADDLs) induced LTP defects in vitro and synaptoxicity and
cognitive deficits in APP transgenic mice. Collectively, these data
suggest that the rapid FYN-dependent abnormal activation and
translocation of RAC/PAK1 is likely to contribute to synaptic
dysfunction and excitatory synaptic deficits involved in a pathway
dysregulating NMDARs and FYN in AD.

PAK1 inhibitors or blockers for AD therapy. Several PAK
inhibitors such as TAT-PAK18, IPA-3 and PF-3758309 have
been developed for the therapy of mainly non-brain solid tumors.
These inhibitors block the growth of PAK1-dependent solid
tumor cells selectively without affecting the growth of normal
cells.52-55 However, the most potent inhibitors fail to pass the
BBB. Thus, it is rather unlikly that this class of drug would be
useful for AD therapy.

Further, since PAK signaling plays a critical role in synaptic
plasticity, learning and memory, there could be limitations for
inhibiting PAK1 as a direct drug target for AD or other brain
diseases. Despite this caveat, based on the dynamic alteration of
PAK1 in different AD stages, PAK1 inhibitors might be still
useful for AD intervention to block abnormal PAK1 activation
and translocation, albeit with a narrow therapeutic window. One
can also (and perhaps more safely) target the upstream Aβ
oligomers. We found that a pleiotropic natural compound,
curcumin, inhibited Aβ-induced PAK1 activity suppressing
persistent phospho-PAK translocation to granules in CA1 neurons
evaluated in aged APPswe Tg2576 mice. Curcumin also

Figure 2. Proposed Rho family pathways involved in actin disorganiza-
tion in AD pathogenesis. Both b-amyloid (Ab) oligomers and fibrillar
amyloid can activate ROCK and PAK1, which in turn activates LIMK1 and
induces cofilin phosphorylation to mediate actin depolymerization.
ROCKs can also induce the processing of APP to the toxic Ab42 species
and inhibitors of ROCKs, such as NSAIDs, can significantly suppress this
amyloidogenic APP processing. Curcumin may indirectly inhibit PAK1
activity via suppressing Ab oligomer and fibril toxicity. This suggests that
dysregulation of Rho-ROCK/LIMK/cofilin and RAC/PAK/LIMK/cofilin sig-
naling pathways might play a significant role in the regulation of
synaptic defects and memory deficits in AD pathogenesis. In addition,
one of the ROCK effectors, CRMP-2 (collapsin response mediator protein-
2) displays a prominent hyperphosphorylation in AD, and CRMP-2 can be
phosphorylated by known tau kinases, GSK3b and Cdk5. Furthermore,
NMDA receptors mediate Ab oligomer-induced effects on dendritic
spine and synaptic marker loss though SRC family Tyr-kinase FYN link to
PAK. FYN activation has been implicated in soluble Ab oligomer induced
LTP defects in vitro, and synaptotoxicity and cognitive deficits in APP
transgenic mice.
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suppressed punctate anti-Aβ staining and pPAK translocation
induced by Aβ42 oligomers in cultured hippocampal neurons.8

Since curcumin has been reported as an effective anti-amyloid and
anti-Aβ oligomer agent in vivo and in vitro,56,57 curcumin’s
activity on PAK1 is likely through the reduction of upstream Aβ
aggregates. Curcumin is an anti-cancer drug with logP~2.5
(XLogP3-AA = 3.2), consistent with BBB permeability; however,
curcumin alone has a very poor bioavailability and has to be
encapsulated with liposomes or formulated for clinical applica-
tion, for example for good oral absorption.58

In 2011, a Gonzalez-Billault group found that fibrillar Aβ42
can activate LIMK, through RAC/CDC42 and PAK1, leading to
the inactivation of cofilin.30 Furthermore, a cofilin phosphatase
called Slingshot (SSH), which antagonizes LIMK, blocks the
neuro-cytotoxicity of fibrillar Aβ42.30 In short, fibrillar Aβ42
block cofilin’s F-actin severing activity through the SRC-Tiam1-
RAC/CDC42-PAK1-LIMK signaling pathway, and SSH could
reverse this neurodegenerative pathway. Thus, in principle an
SSH activator, in addition to a water-soluble (aminohexyl)
derivative of SRC family kinase inhibitors such as PP1 and
PP2, or PAK1/LIM kinase blockers, could be useful candidates
for oral therapy, particularly for early stage AD.

Although neither the potent PAK1 blocker IPA-3 nor the
PAK1 inhibitor PF-3758309 is available on the market for
neurodegenerative diseases, several natural PAK1 blockers are
inexpensively available. One of them is berberine chloride, which
has been shown to ameliorate spatial memory impairment in a rat
Aβ infusion model of AD.59

Huntington Disease

Huntington disease (HD) is an autosomal dominant progressive
neurodegenerative disorder that prominently affects the basal
ganglia, leading to clinically significant motor function, cognitive
and behavioral deficits. HD is caused by an expanded CAG repeat
encoding a polyglutamine (polyQ) tract in exon 1 of the HD gene
Htt coding for huntingtin (htt). Normal HD alleles have 37 or
fewer glutamines in this polymorphic tract, more than 37 of these
residues cause HD.60 A polyQ repeat expansion of more than
37 units as observed in HD results in a very large protein
(. 348 kDa) of 3,145 or more amino acids aggregated in HD.
The length of the CAG tract is directly correlated with disease
onset, with longer expansions leading to earlier onset of HD. The
onset age in HD patients with CAG repeats below 60 units varies
considerably.

Although the hallmark of HD is motor disability that features
chorea, HD and AD patients share many of the same clinical
manifestations. These include behavioral and psychiatric dis-
turbances (including depression and apathy) in the early stages of
the diseases, as well as cognitive defects in later stages that result in
forgetfulness, impaired judgment, disorientation and confusion.
Cognitive deficits in patients with HD are usually less severe than
in AD.

Currently, the exact mechanisms of cellular toxicity caused by
mutant htt are not completely understood. A number of studies
have shown that wild-type htt reduced the cellular toxicity of

mutant huntingtin in vitro and in vivo and protects neurons with
a mechanism that involves inhibition of procaspase-9 processing
or caspase 3.61-64 Wild type htt also prevents PAK2 cleavage by
caspase-3 and caspase-8, which activates PAK2 by releasing a
constitutively active C-terminal kinase domain that mediates cell
death.65 Thus, it has been proposed that loss-of-function of htt
might contribute to neuronal toxicity resulting from the polyQ
expansion.66 In contrast, genetic and transgenic data argue that
the primary toxicity caused by the mutation of the HD gene is via
a gain-of-function caused by intracellular aggregates of mutant htt
protein. It remains unclear whether the toxic effects of this protein
are due to loss of function or soluble monomers, or oligomers or
insoluble species.67 In this respect, the same questions arise with
AD and tau aggregates. And as with AD, PAK1 appears to
modulate toxic pathways in HD.

Recently, PAK1 was identified as an htt interactor that modifies
mutant htt (muhtt) toxicity.68 PAK1 promoted soluble mutant
huntingtin self-interaction that enhances toxicity in HD cellular
models,68 suggesting PAK1 may play an important role in HD
pathogenesis. PAK1 co-localized with muhtt aggregates in cell
models and in human HD brains. PAK1 overexpression not only
enhanced the aggregation of muhtt, but also promotes soluble
wild-type htt (wthtt)-wthtt, wthtt-muhtt and muhtt-muhtt
interactions. Moreover, PAK1 overexpression enhanced htt
toxicity in cell models and neurons in parallel with its ability to
promote aggregation, while PAK1 knockdown suppressed both
aggregation and toxicity. Interestingly, overexpression of either
kinase-dead or wild-type PAK enhanced both aggregation and
toxicity of muhtt protein. The domains of PAK1 that bind htt
also facilitate oligomerization/aggregation, and no enhanced
toxicity was observed with PAK1 domains that do not bind htt.
More importantly, PAK1 also enhances dimerization of wt htt,
but this does not lead to any large or toxic aggregates. This
suggests that PAK1 plays a key role in enhancing htt-htt
interactions in a way that synergizes with the effects of the
“sticky” expanded polyQ tract to enhance aggregated muhtt
toxicity.68

In addition, the PAK-interacting exchange factor (a PIX/
Cool2) was also identified as a novel htt interacting protein.69

Similar to PAK1, a PIX binds to both the N-terminal region of
wthtt and muthtt, and colocalizes with muthtt in cells where it
accumulates in the muthtt aggregates. Deletion analysis suggested
that the dbl homology (DH) and pleckstrin homology (PH)
domains of a PIX are required for its interaction with htt.
Overexpression of a PIX enhanced muthtt aggregation by
inducing SDS-soluble muthtt-muthtt interactions. Conversely,
knocking down a PIX attenuated muhtt aggregation.69 These
findings suggest that a PIX plays an important role in muthtt
aggregation, and targeting PAK1 or a PIX could be a useful
strategy for HD therapy (Fig. 3).

X-Linked Mental Retardation

Mental retardation (MR) is characterized by significantly impaired
cognitive function affecting 2~3% of the population in Western
countries. Unlike AD and HD, MR often occurs before
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adulthood and 25–35% of MR might have a genetic background
with mutations on the X chromosome X-linked mental
retardation (XLMR). XLMR are commonly subdivided into two
forms of non-syndromic and syndromic on the basis of clinical
presentation. The distinction between these two forms of XLMR
is becoming less clear since clinical phenotypes are described from
several mutations of the genes implicated in both nonsyndromic
and syndromic XLMR pedigrees.70 Dysfunction of PAK might be
involved in the pathogenesis of both forms of XLMR, because
mutations in the PAK3 gene were found in nonsyndromic X-
linked mental retardation (MRX)20,21 and inhibition of PAK
activity was found to rescue symptoms of fragile X syndrome
(FXS) in FXS mouse models.

Rho GTPases signaling and PAK3 mutation in nonsyndromic
X-linked mental retardation. Several X-linked forms of non-
syndromic mental retardation (MRX) have been mapped on the X
chromosome. MRX syndromes are clinically homogeneous but
genetically diverse. The lack of distinctive clinical features for
MRX syndrome causes each example to be represented by
essentially a single pedigree. At present more than 60 MRX
pedigrees have been mapped to a variety of loci on the X
chromosome. It has been estimated that these 60 pedigrees define
at least 8–10 genetic loci.71,72 Among them, two MRX genes play
critical roles in pre- or postsynaptic functions involved in Rho
GTPases signaling. The first gene, GDI1, which encodes a GDP-
dissociation inhibitor for Rab3a, is mutated in two MRX
pedigrees that map to Xq28.73 Rab3a is a small G protein that
regulates vesicular transport through the secretory pathway, thus
GDI1 mutations may alter the exocytic events associated with
synaptic transmission.

Another gene found to be mutated in MRX pedigrees mapping
to Xq12 encodes oligophrenin, a protein that includes a GTPase
activation domain (GAP) for Rho GTPases. GAP proteins
stimulate the intrinsic GTPase activity of small G proteins, so
that inactivation of GAP proteins potentially causes constitutive
activity of the corresponding G protein. Oligophrenin shows GAP

activity for Rho, RAC and CDC42, which are G proteins
implicated in the control of actin cytoskeletal organization and
cell shape and motility.74 Since the Rho GTPases have been
implicated directly in the control of axon outgrowth, the shape
and size of dendrites and dendritic spines, the implication of a
Rho GAP in human mental retardation suggests that the Rho
GTPases is directly involved in the synaptic and dendritic
mechanisms of neuronal plasticity in MRX.21

In addition, PAK3 was isolated from Xq22 in MRX families.75

The PAK3 gene is predominantly expressed in fetal and adult
brain, and it has been implicated as a critical downstream effector
of Rho GTPases via the actin cytoskeleton and MAP kinase
cascades. Currently, there are two disease-causing mutations of
PAK3 found in MRX pedigrees, one is a nonsense mutation75 and
another is missense mutation,76 suggesting a direct link between
PAK3 and related pathways and the pathogenesis of MRX.

PAK in fragile X syndrome. Recent studies have found that
physiological activation of synaptic RAC/PAK signaling is
defective in a mouse model of fragile X syndrome (FXS)77 and
inhibition of PAK activity in this model directly ameliorated
several cellular and behavioral deficits, including FXS-related
abnormalities present at the levels of synaptic morphology,
synaptic plasticity and behavioral abnormalities such as locomotor
activity, stereotypy, anxiety and trace fear conditioning.78 This
observation suggested that defects of PAK signaling might directly
contribute to human FXS pathogenesis.

FXS is the most common inherited form of mental retardation
with an estimated incidence of 1 in 4,000 males and 1 in
6,000~8,000 females.79,80 FXS is caused by the expansion of the
CGG repeat in the 5-untranslated region of the fragile X mental
retardation 1 (FMR1) gene located on the X chromosome.81,82

The length of the CGG is the major genetic factor to determine
FXS or the carrier status of individuals. Usually, individuals with
. 200 CGG repeats are classified as having FXS-associated
cognitive deficits and abnormal cortical dendritic spines.83 This
expansion of the CGG repeats in the X-linked FMR1 gene results
in the silencing of transcription of the gene to cause the loss of the
FMR1 protein (FMRP) and clinically to present the fragile X
syndrome phenotype.

FMRP is a selective RNA-binding protein that is mainly
expressed in the brain and gonads where it is mostly confined to
the cytoplasm.84,85 Several studies have shown that FMRP plays a
critical role in regulating mRNA translation, transport and
stability.86,87 In neurons, FMRP regulates the local translation of
a subset of mRNAs at synapses in response to activation of Gp1
metabotropic glutamate receptors and possibly other receptors
essential processes for learning and intellectual development.
However, in the absence of FMRP, dysregulated mRNA
translation leads to altered synaptic function and loss of protein
synthesis-dependent synaptic plasticity.86,88,89 Patients with FXS
display long, thin and immature dendritic spines, which are
similar to the dendritic spine morphology of FMR1 knockout
(KO) mice.90-92 FMR1 KO mice also showed similar behavioral
defects to those found in human FXS such as anxiety,
hyperreactivity to auditory stimuli, impaired motor coordination
and impairment in spatial learning.92-94 Thus, the interaction of

Figure 3. Diagram of PAK1 or PAK-interacting exchange factor (PIX) in
HD pathogenesis. PAK1 or PIX interact with wild-type and mutant htt
protein, promote htt aggregation and enhance htt neuronal toxicity,
which induces clinical behavioral and psychiatric disturbances and
cognitive defects in HD. PAK1 inhibitors or compounds acting upstream
like trehalose and curcumin could suppress both htt aggregate
accumulation and neuronal toxicity.
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PAK with FMRP78 and the defects of synaptic RAC/PAK
signaling in FMR1 KO mice suggest a direct link between altered
PAK function and defective synaptic plasticity in human FXS.
FMRP has also been implicated in regulation of APP expression
via mGluR5 and mGluR5 antagonists currently used to treat FXS,
lower Aβ and audiogenic seizures in vivo.95-97

Since mouse models of FXS (FMR1 KO) recapitulate the
cellular and behavioral phenotypes observed in human FXS, the
genetic rescue of the phenotypes of FXS by inhibiting PAK
activity suggest that targeting PAK signaling pathway could be a
potential therapeutic strategy for development of new drugs for
FXS.

In conclusion, evidence from genetic, biochemical and animal
data suggest that normal learning and memory require functional
PAK and related pathways that are disrupted with the major
dementia of aging (AD) as well as with HD and fragile X and
other syndromes with developmental cognitive deficits.
Preliminary preclinical data suggest that PAK inhibition may be
an interesting approach for the treatment of AD, HD and fragile

X syndrome based on abnormal PAK activation in these diseases.
PAK inhibitors are hypothesized to exert beneficial effects on
improving cognitive impairment via modulation of dendritic
spine morphology and/or synaptic function. This suggests that
abnormal PAK activation contributes to symptoms in several
neurological diseases and raises the possibility of common
treatment strategies that correct PAK dysregulation.
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